Keajaiban Desain Di Alam
30 Mayıs 2016 Pazartesi
Keajaiban Rancangan pada Kemampuan Terbang Serangga
Keajaiban Rancangan pada Kemampuan Terbang Serangga
Jika masalah penerbangan direnungkan, burung segera terlintas dalam pikiran. Namun, burung bukanlah satu-satunya makhluk yang dapat terbang. Beberapa jenis serangga juga dilengkapi dengan kemampuan terbang yang melebihi kemampuan burung. Kupu-kupu Raja dapat terbang dari Amerika Utara hingga ke pedalaman Benua Amerika. Lalat dan capung bahkan dapat tetap diam di udara.
Para evolusionis menyatakan bahwa serangga mulai terbang sejak 300 juta tahun yang lalu. Meski demikian, mereka tidak mampu memberikan jawaban tuntas terhadap pertanyaan-pertanyaan mendasar seperti: bagaimana caranya serangga pertama membentuk sayap-sayapnya, memulai terbang, dan bisa diam di udara?
Evolusionis hanya menyatakan bahwa beberapa lapis kulit tubuhnya mungkin telah berubah menjadi sayap. Sadar akan tidak meyakinkannya pernyataan mereka, mereka juga menyatakan bahwa contoh bentuk-bentuk fosil yang menguatkan penilaian ini tidak tersedia lagi.
Padahal, rancangan sempurna pada sayap serangga tidak meninggalkan ruang bagi kejadian kebetulan. Dalam artikel berjudul "The Mechanical Design of Insect Wings (Rancang Gerak Sayap Serangga)," Ahli biologi Inggris Robin Wootton menulis:
Makin baik kita memahami guna sayap-sayap serangga, makin canggih dan indah rancangannya terlihat… Bentuk-bentuknya umumnya dirancang dengan cacat sekecil mungkin; cara kerjanya dirancang untuk menggerakkan bagian-bagian rancangannya dengan cara yang terencana. Sayap-sayap serangga menggabungkan kedua hal ini menjadi satu, dengan menggunakan bagian-bagian rancangan dari beragam bahan lentur, yang terangkai secara sempurna untuk memungkinkan perubahan bentuk dalam menanggapi kekuatan yang tepat dan untuk menghasilkan pemanfaatan udara sebaik mungkin. Mereka malah sudah lebih dahulu mempunyainya, jika memang ada kesesuaiannya dengan teknologi.4
Di sisi lain, tak ada satu bukti fosil pun untuk khayalan evolusi serangga. Inilah yang disebutkan oleh pakar ilmu hewan Prancis yang terkenal Pierre Paul Grassé ketika beliau menyatakan, "Kita berada dalam kegelapan ketika membahas asal mula serangga."5 Sekarang mari kita teliti beberapa keistimewaan yang menarik dari makhluk-makhluk ini yang meninggalkan para evolusionis di dalam gelap gulita.
Dialah Allah Yang Menciptakan,
Yang Mengadakan, Yang Membentuk Rupa, Yang Mempunyai Asmaaul Husna. Bertasbih kepada-Nya apa yang di langit dan bumi. Dan Dialah Yang Maha Perkasa lagi Maha Bijaksana.
(Surat al Hasyr: 24)
Yang Mengadakan, Yang Membentuk Rupa, Yang Mempunyai Asmaaul Husna. Bertasbih kepada-Nya apa yang di langit dan bumi. Dan Dialah Yang Maha Perkasa lagi Maha Bijaksana.
(Surat al Hasyr: 24)
Yang Mengilhami Helikopter : Capung
Fotografer alam Gilles Martin sedang mengamati capung.
Sayap capung tidak dapat dilipat pada tubuhnya. Selain itu, cara otot terbang digunakan ketika sayap bergerak, berbeda dengan kebanyakan serangga lainnya. Karena sifat ini, para evolusionis menyatakan bahwa capung adalah "serangga terbelakang."
Helikopter Sikorsky dirancang dengan meniru rancangan sempurna dan kemampuan manuver dari seekor capung.
Padahal sebaliknya, sistem terbang makhluk yang disebut "serangga terbelakang" ini tidak lain adalah keajaiban perancangan. Pembuat helikopter terbaik dunia, Sikorsky, menuntaskan perancangan satu dari helikopter mereka dengan menjadikan capung sebagai model.6 IBM, mitra Sikorsky dalam proyek ini memulai dengan menempatkan suatu model capung ke dalam komputer (IBM 3081). Dua ribu jenis penggambaran khusus dilakukan di komputer dalam hal manuver (gerakan jungkir balik) capung di udara. Jadi, model helikopter Sikorsky yang ditujukan untuk pengangkutan tentara dan persenjataan telah dibuat berdasarkan contoh yang berasal dari capung.
Mata capung dianggap sebagai bentuk mata serangga paling rumit di dunia. Setiap mata memuat sekitar tiga puluh ribu lensa. Mata ini menempati sekitar separuh dari daerah kepala dan memberi sang serangga wilayah penglihatan yang lebar sehingga ia hampir selalu dapat mengetahui apa yang ada di belakangnya. Sayap capung merupakan suatu rancangan yang rumit sehingga menyebabkan segala pendapat tentang adanya ketidaksengajaan sebagai asal-usulnya menjadi tidak masuk akal. Selaput sayapnya yang aerodinamik dan setiap pori pada selaput tersebut adalah akibat langsung dari perencanaan dan penghitungan
Gilles Martin, seorang fotografer alam, telah melakukan pengamatan 2 tahun untuk meneliti capung, dan dia juga menyimpulkan bahwa makhluk ini memiliki cara terbang yang sangat rumit.
Tubuh capung menyerupai bentuk pilin yang terbungkus logam. Dua sayapnya saling silang pada badannya yang menampakkan bias warna dari biru muda hingga merah marun. Karena bentuk begini, capung dilengkapi dengan kemampuan manuver yang luar biasa. Tak peduli pada kecepatan atau arah bagaimana pun ia telah bergerak, capung dapat mendadak berhenti dan mulai terbang kembali dengan arah berlawanan. Atau, capung dapat tetap diam di udara untuk berburu. Pada kedudukan seperti itu, ia dapat bergerak dengan sangat cepat menuju mangsanya. Ia dapat mempercepat gerakannya hingga kecepatan yang sangat mengejutkan untuk seekor serangga: 25 mil per jam (40 kilometer/jam), yang dapat disejajarkan dengan seorang atlet lari 100 meter di Olimpiade dengan kecepatan 24,4 mil per jam (39 kilometer/jam).
Pada kecepatan ini, capung bertabrakan dengan mangsanya. Guncangan tabrakan ini sangat kuat. Namun, ketahanan capung sangat lentur sekaligus tahan terhadap benturan. Bentuk yang lentur dari tubuhnya meredam guncangan benturan. Sebaliknya, hal yang sama tidak akan terjadi pada mangsanya. Mangsa capung akan kehilangan kesadaran atau bahkan mati karena benturan itu.
Menyusul benturan ini, kaki belakang capung berperan sebagai senjatanya yang paling mematikan. Kaki menjulur ke depan dan menangkap mangsa yang kaget, kemudian dengan tangkas dicabik-cabik dan dimakan dengan rahangnya yang kuat.
Penglihatan capung sama mengesankannya dengan kemampuannya menunjukkan manuver mendadak pada kecepatan tinggi. Mata capung diakui sebagai contoh terbaik di antara semua serangga. Capung memiliki sepasang mata, tiap matanya memiliki sekitar 30 ribu lensa berbeda. Dua mata nyaris bulat, masing-masing hampir separuh ukuran kepalanya, memberi serangga ini wilayah pandang yang sangat luas. Karena mata-mata ini, capung hampir selalu dapat mengetahui keadaan di belakangnya.
Karena itu, capung merupakan gabungan sistem-sistem, yang masing-masingnya memiliki bentuk tersendiri dan sempurna. Tidak berjalannya salah satu saja dari sistem-sistem ini akan merusak sistem yang lainnya juga. Walaupun begitu, seluruh sistem ini diciptakan tanpa cacat, sehingga makhluk ini tetap bertahan.
Sayap Capung
Gambar di atas menunjukkan pergerakan sayap capung ketika terbang. Sayap depan ditandai dengan bintik merah. Pengamatan lebih dekat memperlihatkan bahwa pasangan sayap depan dan belakang dikepakkan dengan irama yang berbeda, yang memberi sang serangga cara terbang yang luar biasa. Gerakan sayap tersebut dimungkinkan oleh otot-otot khusus yang bekerja dengan selaras
Bagian tubuh yang paling penting dari capung adalah sayapnya. Akan tetapi, tidaklah mungkin menggunakan model evolusi perkembangan untuk menjelaskan cara terbang yang memungkinkan penggunaan sayap ini. Pertama, teori evolusi tidak punya penjelasan tentang masalah asal mula sayap, karena sayap hanya dapat bekerja jika berkembang bersama sekaligus agar dapat bekerja dengan benar.
Fosil capung berumur 250 juta tahun dan capung saat ini.
Mari kita menganggap, untuk sementara, bahwa gen seekor serangga di tanah mengalami mutasi dan beberapa bagian dari jaringan kulit pada tubuhnya menunjukkan perubahan yang tidak pasti. Sangat tidak masuk akal bila menganggap bahwa mutasi lainnya di puncak perubahan ini bisa "secara kebetulan" menjadi sayap. Lebih dari itu, mutasi pada tubuhnya pun tidak akan menghasilkan sayap secara utuh bagi serangga ini atau pun menjadikannya lebih sempurna, malah akan menurunkan daya geraknya. Akibatnya, serangga perlu membawa beban lebih berat, yang tidak memberikan tujuan apa pun yang jelas. Ini akan membuat serangga ini berada pada keadaan yang tidak menguntungkan di hadapan musuhnya. Bahkan, menurut dasar teori evolusi, seleksi alam akan menimpa serangga cacat tersebut dan keturunannya pun punah.
Padahal, mutasi sangat jarang terjadi. Mutasi selalu merugikan makhluk hidup, mengakibatkan penyakit mematikan dalam banyak kejadian. Itulah mengapa mustahil suatu mutasi kecil dapat menyebabkan beberapa pembentukan pada tubuh capung untuk berevolusi menjadi suatu gerakan terbang. Setelah semua ini, mari kita tanyakan pada diri sendiri: meskipun kita beranggapan, jika hal-hal lain tak berpengaruh, bahwa jalan cerita yang ditawarkan para evolusionis mungkin saja terjadi, mengapa fosil-fosil "capung terbelakang" yang mendukung jalan cerita ini tidak ada?
Tidak ada perbedaan antara fosil capung tertua dengan capung di masa sekarang. Tidak ditemukan sisa-sisa "separuh capung" atau seekor "capung dengan sayap yang baru muncul" yang mendahului fosil tertua tersebut.
Layaknya bentuk kehidupan lainnya, capung juga muncul sekaligus dan tidak mengalami perubahan hingga saat ini. Dengan kata lain, capung memang diciptakan oleh Allah dan tidak pernah "berevolusi."
Kerangka serangga terbentuk dari zat yang kokoh dan melindunginya, yang disebut kitin. Zat ini diciptakan dengan kekuatan yang cukup untuk membentuk rangka luar. Bahan ini juga cukup lentur untuk digerakkan oleh otot-otot yang digunakan untuk terbang. Sayap-sayap tersebut dapat bergerak maju mundur atau pun atas bawah. Gerak sayap ini didukung oleh suatu bentuk persendian yang rumit. Capung memiliki dua pasang sayap, sepasang di bagian depan pasangan lainnya. Sayap-sayap tersebut bergerak secara berlawanan, yakni, ketika dua sayap di depan terangkat, maka kedua sayap belakangnya bergerak turun. Dua kelompok otot yang berlawanan menggerakkan sayap-sayap tersebut. Otot-otot tersebut terikat pada tuas di dalam tubuh. Ketika satu kelompok otot menarik sepasang sayap dengan mengerut, kelompok otot yang lain membuka sepasang sayap lainnya dengan serta merta. Helikopter naik dan turun dengan cara yang serupa. Hal ini memungkinkan capung untuk diam di udara, bergerak mundur atau seketika mengubah arah.
Zat kitin yang menyelubungi tubuh serangga cukup kuat bertindak sebagai rangka, yang pada serangga ini, terbentuk dengan warna yang amat menarik perhatian.
Perubahan Bentuk (Metamorfosis) Capung
Capung betina tidak akan kawin lagi setelah pembuahan. Namun, hal ini bukanlah masalah bagi jenis jantan Calopteryx virgo. Dengan menggunakan kait pada ekornya, capung jantan menangkap betinanya di lehernya (1). Sang betina melilitkan kakinya di sekitar ekor capung jantan. Pejantan dengan menggunakan sambungan khusus di ekornya (2), membersihkan mani yang mungkin tertinggal dari pejantan lain. Kemudian, dia memasukkan maninya ke dalam rongga kelamin sang betina. Karena peristiwa ini memakan waktu berjam-jam, mereka kadangkala terbang dalam posisi berhimpitan. Capung meninggalkan telur dewasa di kedangkalan danau atau kolam (3). Begitu kepompong menetas dari telur, kepompong tinggal di dalam air selama tiga sampai empat tahun (4). Selama masa tersebut, kepompong juga makan di dalam air (5). Karena itu, ia diciptakan dengan tubuh yang mampu berenang cepat untuk dapat menangkap ikan dan menjepitnya dengan cukup kuat untuk mencabik-cabik mangsanya. Dengan tumbuhnya kepompong, kulit yang membungkus tubuhnya menguat. Ia melepaskan kulit tersebut dalam empat masa yang berbeda. Ketika sampai pada perubahan terakhir, ia meninggalkan air dan mulai mendaki tumbuhan tinggi atau batu (6). Ia mendaki hingga kakinya terpancang kokoh. Kemudian, ia melindungi dirinya sendiri dengan bantuan penjepit di ujung kaki-kakinya. Sekali terpeleset dan terjatuh berarti kematian pada saat itu.
Tahap terakhir berbeda dengan empat tahap sebelumnya, inilah masa ketika Allah membentuk capung menjadi makhluk yang dapat terbang melalui peralihan yang mengagumkan.
Punggung kepompong pertama-tama terbelah (7). Belahan itu melebar dan menjadi celah terbuka, tempat makhluk baru yang sangat berbeda dari bentuk sebelumnya, berjuang untuk keluar. Tubuh yang sangat rentan ini dilindungi dengan ikatan yang ditarik dari makhluk sebelumnya (8) Ikatan ini diciptakan mempunyai kebeningan dan kelenturan yang sempurna. Jika tidak demikian ikatan akan putus dan tidak bisa dibawa, yang bisa berarti bahwa ulat tersebut dapat terjatuh ke dalam air dan mati.
Di samping itu, terdapat serangkaian cara khusus yang membantu capung memecahkan kulit kepompongnya. Tubuh capung menyusut dan mengeriput di dalam tubuh lamanya. Untuk "membuka" kepompong tersebut, suatu sistem pompa dan cairan tubuh khusus diciptakan untuk digunakan pada proses ini. Bagian tubuh yang mengeriput ini menggembung dengan memompakan cairan tubuhnya setelah berhasil keluar dari celah kepompong (9). Sementara itu, larutan-larutan kimiawi mulai memutus ikatan antara kaki baru dengan kaki lama tanpa merusaknya. Proses ini sangat sempurna meskipun akan menimbulkan kerusakan seandainya satu kaki terjebak. Kaki-kaki tersebut dibiarkan mengering dan mengeras selama sekitar dua puluh menit sebelum digunakan.
Sayap-sayapnya sudah terbentuk sempurna namun masih dalam keadaan terlipat. Cairan tubuh dipompakan dengan pengerutan tubuh yang kuat ke dalam jaringan sayap (10). Sayap tersebut mengering setelah meregang (11).
Setelah capung meninggalkan tubuh lamanya dan mengering dengan sempurna, capung mencoba seluruh kaki dan sayapnya. Kaki-kaki dilipat dan diregangkan satu demi satu dan sayapnya dinaik-turunkan.
Akhirnya, serangga ini mencapai bentuk yang dirancang untuk terbang. Sangatlah sulit bagi siapa pun untuk mempercayai bahwa makhluk yang terbang sempurna ini sama dengan makhluk yang menyerupai ulat yang meninggalkan air (12). Capung memompakan kelebihan cairan keluar, untuk menyeimbangkan sistemnya. Metamorfosis selesai dan sang capung siap mengudara.
Kita menyaksikan kemustahilan pernyataan teori evolusi kembali ketika kita mencoba dengan menggunakan akal untuk menemukan asal mula peralihan yang menakjubkan ini. Teori evolusi menyatakan bahwa semua makhluk muncul melalui perubahan acak. Padahal, metamorfosis capung merupakan suatu proses yang sangat rumit dan tidak memberi celah bahkan untuk satu kesalahan kecil pun pada tiap-tiap tahap yang dilaluinya. Rintangan terkecil dalam setiap tahap ini akan mengakibatkan metamorfosis tidak sempurna yang mengakibatkan luka atau kematian capung. Metamorfosis benar-benar merupakan daur hidup dengan "kerumitan yang tak tersederhanakan" sehingga menjadi bukti perancangan yang nyata.
Pendeknya, metamorfosis capung merupakan satu dari sekian banyak bukti nyata mengenai betapa sempurnanya Allah menciptakan makhluk hidup. Seni mengagumkan dari Allah terwujud dengan sendirinya bahkan dalam seekor serangga.
Gerak Terbang
A
1. Wings down: sayap turun
2. Wings up: sayap naik
3. Muscles relax from front to back: otot mengendur dari depan ke belakang
B
4 Muscles relax lengthways: otot mengendur membujur
5. Joint mechanism: Susunan dn gerakan sendi
6. Main muscles lift the wings: otot utama mengangkat sayap
7. Main muscles lower the wings: otot utama menurunkan sayap
Sistem sayap berimbangan ganda ditemukan bekerja pada serangga yang kurang sering mengepakkan sayap.
|
Sayap lalat bergetar menurut sinyal listrik yang dihantarkan oleh saraf. Contohnya, pada belalang setiap satu sinyal saraf menghasilkan satu pengerutan otot yang akibatnya menggerakkan sayap. Dua kelompok otot yang berlawanan, yang dikenal sebagai "pengangkat" dan "peredam" menjadikan sayap bergerak naik dan turun dengan menarik dalam arah yang berlawanan.
Jangkrik mengepakkan sayapnya dua belas hingga lima belas kali per detik, namun serangga yang lebih kecil perlu jumlah kepakan yang lebih tinggi agar dapat terbang. Contohnya, jika lebah madu, tawon dan lalat mengepakkan sayapnya 200 hingga 400 kali per detik, jumlah ini meningkat hingga 1000 kali pada ngengat dan beberapa parasit sepanjang 1 milimeter.7 Bukti lain yang jelas tentang penciptaan yang sempurna adalah bahwa makhluk terbang sepanjang 1 milimeter mampu mengepakkan sayapnya dengan jumlah yang luar biasa mencapai seribu kali per detik tanpa membakar, mengoyak, atau pun melelahkan serangga itu.
Jika kita teliti makhluk terbang ini lebih dekat lagi, kekaguman kita akan rancangannya pun bertambah.
Telah disebutkan bahwa sayap mereka digerakkan dengan perantaraan sinyal listrik yang dikirimkan melalui saraf. Akan tetapi, suatu sel saraf hanya mampu menghantarkan sebanyak-banyaknya 200 sinyal per detik. Lalu, bagaimana mungkin serangga terbang kecil ini mencapai 1000 kepakan sayap per detik?
Lalat yang mengepakkan sayapnya 200 kali per detik memiliki hubungan saraf-otot yang berbeda dengan yang terdapat pada belalang. Terdapat satu sinyal yang dialirkan untuk setiap 10 kepakan sayap. Di samping itu, otot yang dikenal sebagai otot serat bekerja dengan pola yang berbeda dengan otot-otot belalang. Sinyal saraf hanya memerintahkan otot bersiap untuk terbang dan, ketika otot mencapai tingkat tegangan tertentu, otot pun mengendur dengan sendirinya.
Terdapat suatu sistem pada lalat, lebah madu, dan tawon yang mengubah kepak sayap menjadi gerakan "otomatis." Otot-otot yang memungkinkan penerbangan pada serangga-serangga ini tidak terikat langsung pada tulang-tulang tubuh. Sayap menempel ke dada dengan persendian yang berguna sebagai poros. Otot yang menggerakkan sayap dihubungkan dengan permukaan bawah dan atas dada. Ketika otot-otot tersebut mengerut, dada bergerak dalam arah berlawanan, yang pada gilirannya menimbulkan tarikan ke bawah.
Mengendurkan sekelompok otot secara otomatis menghasilkan pengerutan kelompok yang berlawanan yang diikuti dengan pengenduran. Dengan kata lain, hal ini merupakan suatu "sistem otomatis." Dengan cara ini, gerakan otot berlanjut tanpa henti hingga sinyal pemberitahuan berlawanan dikirimkan melalui saraf yang mengendalikan sistem tersebut.8
Cara terbang seperti itu dapat dibandingkan dengan sebuah jam yang bekerja berdasarkan pegas melingkar. Bagian ini ditempatkan dengan tepat sehingga satu gerakan tunggal saja dengan mudah menggerakkan sayap. Mustahil kita tidak melihat rancangan yang sempurna pada contoh ini. Ciptaan Allah yang sempurna pun terbukti.
Double Balanced Wing System
1
a. Lempengan kitin ke dua
2
b. Adjoining tissue: Jaringan penyambung c. Side surface of chest: Permukaan sisi dada Protective layer (body shell): Lapisan pelindung (perisai tubuh) |
3
Protective layer (body shell): Lapisan pelindung (perisai tubuh) d. Flexing side muscles: Otot pembengkok sisi
4
f.Wing: Sayap g. Inner section: Bagian dalam |
Beberapa jenis lalat mengepakkan sayapnya hingga seribu kali dalam satu detik. Untuk mencapai gerakan luar biasa ini, satu sistem yang amat istimewa diciptakan. Sebagai ganti menggerakkan sayap secara langsung, otot mendorong suatu jaringan khusus tempat sayap melekat melalui sendi seperti poros. Jaringan khusus ini memungkinkan sayap mengepak berkali-kali dalam satu tarikan
| |
Sistem di Balik Gaya Dorong
Encarsia
Sayap lalat bergetar menurut sinyal listrik yang dihantarkan oleh saraf. Contohnya, pada belalang setiap satu sinyal saraf menghasilkan satu pengerutan otot yang akibatnya menggerakkan sayap. Dua kelompok otot yang berlawanan, yang dikenal sebagai "pengangkat" dan "peredam" menjadikan sayap bergerak naik dan turun dengan menarik dalam arah yang berlawanan.
Jangkrik mengepakkan sayapnya dua belas hingga lima belas kali per detik, namun serangga yang lebih kecil perlu jumlah kepakan yang lebih tinggi agar dapat terbang. Contohnya, jika lebah madu, tawon dan lalat mengepakkan sayapnya 200 hingga 400 kali per detik, jumlah ini meningkat hingga 1000 kali pada ngengat dan beberapa parasit sepanjang 1 milimeter.7 Bukti lain yang jelas tentang penciptaan yang sempurna adalah bahwa makhluk terbang sepanjang 1 milimeter mampu mengepakkan sayapnya dengan jumlah yang luar biasa mencapai seribu kali per detik tanpa membakar, mengoyak, atau pun melelahkan serangga itu.
Jika kita teliti makhluk terbang ini lebih dekat lagi, kekaguman kita akan rancangannya pun bertambah.
Telah disebutkan bahwa sayap mereka digerakkan dengan perantaraan sinyal listrik yang dikirimkan melalui saraf. Akan tetapi, suatu sel saraf hanya mampu menghantarkan sebanyak-banyaknya 200 sinyal per detik. Lalu, bagaimana mungkin serangga terbang kecil ini mencapai 1000 kepakan sayap per detik?
Lalat yang mengepakkan sayapnya 200 kali per detik memiliki hubungan saraf-otot yang berbeda dengan yang terdapat pada belalang. Terdapat satu sinyal yang dialirkan untuk setiap 10 kepakan sayap. Di samping itu, otot yang dikenal sebagai otot serat bekerja dengan pola yang berbeda dengan otot-otot belalang. Sinyal saraf hanya memerintahkan otot bersiap untuk terbang dan, ketika otot mencapai tingkat tegangan tertentu, otot pun mengendur dengan sendirinya.
Terdapat suatu sistem pada lalat, lebah madu, dan tawon yang mengubah kepak sayap menjadi gerakan "otomatis." Otot-otot yang memungkinkan penerbangan pada serangga-serangga ini tidak terikat langsung pada tulang-tulang tubuh. Sayap menempel ke dada dengan persendian yang berguna sebagai poros. Otot yang menggerakkan sayap dihubungkan dengan permukaan bawah dan atas dada. Ketika otot-otot tersebut mengerut, dada bergerak dalam arah berlawanan, yang pada gilirannya menimbulkan tarikan ke bawah.
Mengendurkan sekelompok otot secara otomatis menghasilkan pengerutan kelompok yang berlawanan yang diikuti dengan pengenduran. Dengan kata lain, hal ini merupakan suatu "sistem otomatis." Dengan cara ini, gerakan otot berlanjut tanpa henti hingga sinyal pemberitahuan berlawanan dikirimkan melalui saraf yang mengendalikan sistem tersebut.8
Cara terbang seperti itu dapat dibandingkan dengan sebuah jam yang bekerja berdasarkan pegas melingkar. Bagian ini ditempatkan dengan tepat sehingga satu gerakan tunggal saja dengan mudah menggerakkan sayap. Mustahil kita tidak melihat rancangan yang sempurna pada contoh ini. Ciptaan Allah yang sempurna pun terbukti.
Lalat debu memerlukan banyak energi untuk mempertahankan 1000 kepakan per detik. Energi ini diperoleh dari zat makanan kaya karbohidrat yang mereka kumpulkan dari bunga. Karena garis-garis kuning dan hitamnya serta kemiripan mereka dengan lebah, lalat ini berhasil menghindar dari perhatian banyak penyerang
As an example, some types of small parasites, Encarsia, make use of a method called "clap and peel". In this method, the wings are clapped together at the top of the stroke and then peeled off. The front edges of the wings, where a hard vein is located, separate first, allowing airflow into the pressurised area in between. This flow creates a vortex helping the up-lift force of the wings clapping.9
1. Cakram berputarc
2. Rangka yang bergerak mengitari cakram 3. Pesawat miring 4. Rangka mengikuti gerakan pesawat 5. Kedudukan cakram tetap tak berubah |
6. Garis yang menggambarkan sayap pesawat
7. Penerbangan mendatar 8. Garis khayal cakrawala 9. Pesawat miring ke kiri |
Judul cetak tebal: Seekor lalat 100 miliar kali lebih kecil dibandingkan dengan pesawat. Namun demikian, ia dilengkapi dengan peralatan rumit yang berfungsi seperti giroskop dan penyejajar cakrawala, yang amat penting bagi penerbangan. Kemampuan gerak manuver dan teknik terbangnya, di lain pihak, jauh di atas kemampuan pesawat.
There is another special system created for insects to maintain a steady position in the air. Some flies have only a pair of wings and round shaped organs on the back called halteres. The halteres beat like a normal wing during flight but do not produce any lift like wings do. The halteres move as the flight direction changes, and prevent the insect from losing its direction. This system resembles the gyroscope used for navigation in today's aircraft.10
Sayap yang melipat pada lebah madu
2. Bagian pendukung ketiga pada kitin
3. Keadaan terlipat
Banyak serangga yang dapat melipat sayapnya. Sayap dapat dengan mudah dilipat dengan bantuan lempeng kitin pendukung pada pangkalnya. Angkatan Udara Amerika telah memproduksi pesawat penyusup E6B dengan sayap yang dapat dilipat setelah terilhami oleh contoh ini. Sementara lebah dan lalat dapat melipat seluruh sayapnya ke badannya, E6B hanya mampu melipat separuh sayapnya ke atas separuh bagian yang lain.
Resilin
Sambungan sayap terbentuk dari suatu protein khusus, yang disebut resilin, yang memiliki kelenturan luar biasa. Di laboratorium, para insinyur kimia bekerja untuk menggandakan bahan kimia ini, yang menunjukkan sifat yang jauh lebih unggul dibandingkan karet alam maupun buatan. Resilin merupakan suatu zat yang mampu menyerap gaya yang dikenakan padanya maupun melepaskan energi kembali begitu gaya tersebut terangkat. Dari sudut pandang ini, efisiensi resilin mencapai nilai yang sangat tinggi, 96%. Dengan cara ini, sekitar 85% energi yang digunakan untuk mengangkat sayap disimpan dan digunakan kembali ketika sayap dikatupkan/terlipat lagi.11 Selaput dan otot dada juga dibuat untuk membantu keadaan ini.
(Atas) Gambar ini, yang menunjukkan jalan yang dilalui oleh seekor lebah yang ditempatkan di dalam kotak kaca, memperlihatkan bagaimana lebah itu berhasil terbang ke segala arah termasuk naik, turun, dan dalam mendarat serta lepas landas
(Bawah)Gambar di samping memperlihatkan kemampuan manuver dari tiga pesawat yang dianggap terbaik dalam kelompoknya. Namun, lalat dan lebah mampu secara tiba-tiba mengubah arah ke segala penjuru tanpa mengurangi kecepatan. Contoh ini dengan jelas menunjukkan betapa lemahnya teknologi pesawat jet dibandingkan dengan lalat dan lebah.
Sistem Pernapasan Khusus pada Serangga
1. Sel Epitel
2. O2: Oxigen 3. CO2:Carbon di Oxcide |
4. : Trakea (batang tenggorok)
5. Trakeoli (cabang batang tenggorok) 6. Otot |
Terdapat sistem luar biasa yang diciptakan di dalam tubuh lalat dan serangga lain agar mereka mampu memenuhi kebutuhan akan pasokan oksigen yang tinggi: Udara, seperti di dalam peredaran darah, dikirim langsung ke setiap jaringan melalui pembuluh-pembuluh khusus. Di atas adalah contoh sistem semacam ini dalam jangkrik:
A) Batang tenggorok dari jangkrik yang diambil gambarnya dengan mikroskop elektron. Di sekeliling dinding batang tersebut terdapat spiral penguat seperti yang terdapat pada pipa alat penyedot debu.
B) Setiap batang tenggorok mengirim oksigen kepada sel-sel tubuh serangga dan membuang karbon dioksida
Lalat terbang pada kecepatan yang sangat tinggi jika dibandingkan dengan ukuran tubuhnya. Capung dapat mengembara dengan kecepatan 25 mil per jam (40 kilometer/jam). Bahkan serangga yang lebih kecil dapat mencapai kecepatan hingga 31 mil per jam (50 kilometer/jam). Kecepatan ini sebanding dengan manusia yang melakukan perjalanan dengan kecepatan ribuan mil per jam. Manusia hanya dapat mencapai kecepatan ini bila menggunakan pesawat jet. Padahal, jika kita mengingat ukuran pesawat jet jika dibandingkan dengan manusia, jelas bahwa lalat-lalat ini sebenarnya terbang lebih cepat daripada pesawat terbang.
Pesawat jet menggunakan bahan bakar khusus untuk menggerakkan mesin berkecepatan tingginya. Daya terbang lalat, pun memerlukan tingkat tenaga yang tinggi. Juga dibutuhkan sejumlah besar oksigen untuk membakar energi tersebut. Kebutuhan oksigen dalam jumlah besar ini dipenuhi oleh sistem pernapasan yang luar biasa yang terletak di dalam tubuh lalat dan serangga lainnya.
Sistem pernapasan ini bekerja sangat berbeda dengan sistem pernapasan kita. Kita menghirup udara ke dalam paru-paru. Di sini, oksigen bercampur dengan darah dan dibawa ke seluruh tubuh oleh darah. Kebutuhan lalat akan oksigen begitu tinggi sehingga hampir tidak ada waktu untuk menunggu oksigen dikirim ke sel-sel tubuh oleh darah. Untuk mengatasi masalah ini, ada suatu sistem yang sangat khusus. Tabung udara di dalam tubuh serangga mengangkut udara ke bagian-bagian berbeda dari tubuh lalat. Seperti halnya sistem peredaran dalam tubuh, ada suatu jaringan tabung yang canggih dan rumit (disebut sistem trakea) yang mengirim udara yang mengandung oksigen ke tiap sel di dalam tubuh.
Berkat sistem ini, sel-sel yang mendukung otot-otot terbang dapat mengambil oksigen secara langsung dari tabung-tabung tersebut. Sistem ini juga membantu mendinginkan otot setelah bekerja dengan tingkat tinggi yang setara 1000 putaran per detik.
Jelaslah sudah bahwa sistem ini merupakan contoh penciptaan. Tidak ada proses kebetulan yang mampu menjelaskan rancangan yang rumit ini. Mustahil pula sistem ini berkembang dalam tahap-tahap yang dikemukakan oleh teori evolusi. Jika sistem trakea tidak bekerja secara penuh, maka tidak akan ada tahap peralihan yang menguntungkan makhluk tersebut, sebaliknya malah akan membahayakannya karena membuat sistem pernapasannya tidak bekerja.
Seluruh sistem yang telah kita telaah sejauh ini sama-sama memperlihatkan bahwa terdapat suatu rancangan yang luar biasa bahkan hingga makhluk yang sering diabaikan seperti lalat. Setiap lalat merupakan suatu keajaiban yang membuktikan rancangan sempurna pada ciptaan Allah. Di sisi lain, "proses evolusi" yang dikemukakan oleh Darwinisme jauh dari penjelasan bagaimana satu sistem pun dari seekor lalat berkembang.
Dalam Al Qur'an, Allah mengajak seluruh manusia untuk merenungkan kenyataan ini:
Hai manusia, telah dibuat perumpamaan, maka dengarkanlah olehmu perumpamaan itu. Sesungguhnya segala yang kamu seru selain Allah sekali-kali tidak dapat menciptakan seekor lalat pun, walaupun mereka bersatu untuk menciptakannya. Dan jika lalat itu merampas sesuatu dari mereka, tidaklah mereka dapat merebutnya kembali dari lalat itu. Amat lemahlah yang menyembah dan amat lemah (pulalah) yang di sembah. (Surat Al Hajj :73)
"... Mereka sekali-kali tidak dapat menciptakan seekor lalat pun..."
Bahkan seekor lalat lebih canggih daripada semua perkakas teknologi yang telah manusia ciptakan. Lebih jauh lagi, lalat adalah "makhluk hidup". Pesawat dan helikopter hanya dapat dipakai dalam jangka waktu tertentu, setelah itu dibiarkan berkarat. Lalat, di lain pihak, malah menghasilkan keturunan yang serupa dengannya.
Hai manusia, telah dibuat perumpamaan, maka dengarkanlah olehmu perumpamaan itu. Sesungguhnya segala yang kamu seru selain Allah sekali-kali tidak dapat menciptakan seekor lalat pun, walaupun mereka bersatu menciptakannya. …
Mereka tidak mengenal Allah dengan sebenar-benarnya.
Sesungguhnya Allah benar-benar Maha Kuat lagi Maha Perkasa.
(Surat al Hajj: 73-74)
Mereka tidak mengenal Allah dengan sebenar-benarnya.
Sesungguhnya Allah benar-benar Maha Kuat lagi Maha Perkasa.
(Surat al Hajj: 73-74)
Lalat rumah menggunakan benang lidah (labellum) pada bagian mulutnya untuk "menguji mutu" makanan sebelum dimakan. Tidak seperti kebanyakan makhluk, lalat mencerna makanan mereka di luar. Ia mengoleskan cairan pelarut pada makanan. Cairan ini melarutkan makanan menjadi cairan yang dapat dihisap oleh lalat. Kemudian, lalat memasukkan zat makanan cair ke dalam tubuhnya sendiri melalui bulu-bulu getar yang mencolek dan menghisap perlahan cairan tersebut ke dalam belalai perabanya
Seekor lalat dapat dengan mudah berjalan di atas permukaan paling licin atau tetap diam di langit-langit rumah selama berjam-jam. Kakinya diciptakan lebih baik untuk menempel pada kaca, dinding dan atap dibandingkan dengan para pendaki. Jika pengait yang dapat dipanjang-pendekkan tidak cukup, telapak berpenghisap pada kakinyalah yang menempelkannya pada permukaan tersebut. Kekuatan penempelan dari kaki penghisap meningkat berkat cairan khusus yang dioleskan
|
Cara terbang lalat rumah merupakan suatu kejadian yang amat rumit. Pertama, lalat rumah dengan seksama memeriksa alat-alat tubuh yang akan digunakan dalam penentuan arah terbang. Kemudian, lalat mengambil posisi siap terbang dengan menyesuaikan alat-alat penyeimbang di bagian depan. Terakhir, lalat memperhitungkan sudut tinggal landas, yang tergantung pada arah dan kecepatan angin, dengan menggunakan indera antenanya. Kemudian, lalat pun terbang. Dan hebatnya, semua ini terjadi dalam seperseratus detik.
Oleh karena itu, kita bisa memberinya gelar "raja terbang akrobat." Lalat dapat terbang dengan gerak zig-zag yang luar biasa di udara. Lalat bisa lepas landas secara tegak lurus dari tempatnya berdiri. Tak peduli betapa licin dan gelapnya permukaan, lalat bisa berhasil mendarat di mana pun.
Ciri lain raja sihir terbang ini adalah kemampuannya mendarat di loteng. Karena daya tarik bumi, lalat rumah tidak dapat berpegangan dan jatuh. Akan tetapi, lalat telah diciptakan dengan suatu sistem untuk menjadikan yang mustahil itu menjadi mungkin. Di ujung kaki-kakinya, ada bantalan sedot yang amat kecil. Di samping itu, bantalan ini menyebarkan cairan lengket ketika bersentuhan dengan suatu permukaan. Cairan lengket ini memungkinkannya tetap menempel ke loteng. Ketika mendekati loteng, lalat meregang kaki-kakinya ke depan dan segera ketika lalat merasakan sentuhan loteng, lalat pun terjun dan mencengkeram permukaan loteng. Lalat mempunyai dua buah sayap. Sayap-sayap ini, yang menyatu dengan tubuhnya di bagian tengah dan terdiri atas selaput yang amat tipis yang dipotong oleh pembuluh-pembuluh darah, bisa digerakkan secara terpisah satu sama lain. Akan tetapi, ketika terbang sayap-sayap tersebut bergerak maju mundur pada satu sumbu seperti halnya pesawat bersayap tunggal. Otot-ototnya yang memungkinkan pergerakan sayap-sayap itu mengerut saat lepas landas dan mengendur saat mendarat. Meskipun dikendalikan oleh saraf-saraf di awal penerbangan, otot-otot dan gerakan sayap ini menjadi bergerak sendiri tak lama setelahnya.
Sensor-sensor di bawah sayap dan di belakang kepalanya mengirimkan informasi tentang penerbangannya segera ke otaknya. Jika lalat rumah menghadapi aliran udara baru selama terbang, sensor-sensor ini segera mengirimkan sinyal-sinyal yang diperlukan otak. Otot-ototnya pun mulai mengarahkan sayap-sayap menurut keadaan baru tersebut. Itulah mengapa seekor lalat dapat menentukan serangga lain yang menciptakan aliran udara itu dan seringkali selalu bisa lari mengamankan diri. Lalat rumah menggerakkan sayap-sayapnya seratus kali dalam sedetik. Energi yang dikeluarkan selama terbang kira-kira seratus kali dari yang digunakan saat istirahat. Dari sudut pandang ini, kita bisa mengatakan bahwa lalat adalah makhluk yang sangat kuat karena metabolisme tubuh manusia hanya bisa menggunakan sepuluh kali energinya dalam keadan darurat jika dibandingkan keadaan hidup yang biasa. Di samping itu, manusia bisa mempertahankan pembebasan energi ini paling banyak hanya beberapa menit. Sebaliknya, lalat dapat mempertahankan irama itu hingga setengah jam dan bisa terbang hingga satu mil dengan kecepatan yang sama.12
Mata lalat rumah terdiri atas 6000 bentuk mata yang ditata dalam segi enam yang disebut ommatidium. Karena setiap ommatidium dihadapkan ke arah yang berbeda-beda, seperti ke depan, belakang, bawah, atas, dan ke setiap sisi, lalat dapat melihat ke mana-mana. Dengan kata lain, ia dapat mengindera segala sesuatu dalam daerah penglihatan 360 derajat. Delapan neuron sel saraf reseptor (penerima cahaya) tersambung kepada setiap satuan mata ini, sehingga secara keseluruhan ada sekitar 48.000 sel pengindera di dalam matanya. Beginilah caranya ia dapat memproses hingga seratus gambar per detik.
Rancangan pada sayapnya memberi lalat keterampilan terbang yang luar biasa. Pinggir, permukaan, dan pembuluh pada sayapnya diselimuti oleh bulu pengindera yang amat peka yang memungkinkan sang lalat merasakan aliran udara dan tekanan gerak.
|
Catatan Kaki
4. Robin J. Wootton, "The Mechanical Design of Insect Wings", Scientific American, Volume 263, November 1990, Page 120.
5. Pierre Paul Grassé, Evolution of Living Organisms, New York, Academic Press, 1977, P.30
6. "Exploring The Evolution of Vertical Flight At The Speed of Light", Discover, October 1984, Pp. 44-45.
7. Ali Demirsoy, Yasamin Temel Kurallari (Basic Fundamentals of Life), Ankara, Meteksan As., Volume Ii, Section Ii, 1992, P. 737.
8. Bilim Ve Teknik Görsel Bilim Ve Teknik Ansiklopedisi (Encyclopedia of Science and Technology), Istanbul, Görsel Publications, P. 2676.
9. Bilim Ve Teknik Görsel Bilim Ve Teknik Ansiklopedisi (Encyclopedia of Science and Technology) P. 2679.
10. Smith Atkinson, Insects, London, Research Press, Volume I, 1989, P. 246.
11. Bilim Ve Teknik Görsel Bilim Ve Teknik Ansiklopedisi (Encyclopedia of Science and Technology), P. 2678.
12. Dieter Schweiger, "Die Fliegen", Geo, April 1993, Pp. 66-82.
Burung: Mesin Terbang yang Sempurna
Burung: Mesin Terbang yang Sempurna
Karena mereka yakin bahwa burung pasti pernah berevolusi, para evolusionis menyatakan bahwa burung adalah keturunan reptil. Padahal, model evolusi yang berkembang tidak mampu menjelaskan satu pun dari gerak tubuh burung, yang memiliki bentuk sangat berbeda dengan hewan menyusui. Pertama, bagian tubuh utama dari burung, yakni sayap, merupakan rintangan besar untuk menjelaskan teori evolusi. Salah satu evolusionis Turki, Engin Korur, membuat pengakuan berikut ketika menyebutkan mustahilnya evolusi sayap:
Sifat umum mata dan sayap burung adalah bahwa keduanya hanya dapat bekerja jika sudah tumbuh sempurna. Dengan kata lain, mata yang baru mengalami separuh perkembangan tidak akan mampu melihat, dan seekor burung dengan sayap setengah terbentuk tidak akan mampu terbang. Bagaimana alat-alat tubuh tersebut menjadi seperti saat ini adalah salah satu misteri yang masih sedang terus diteliti.13
Pertanyaan tentang bagaimana bentuk sayap yang sempurna mungkin telah terbentuk melalui serangkaian mutasi acak bertahap, tetap sepenuhnya tak terjawab. Proses agar kaki depan reptil dapat beralih menjadi sebuah sayap yang sempurna juga tidak pernah terjelaskan.
Dan apakah mereka tidak memperhatikan burung-burung yang mengembangkan dan mengatupkan sayapnya di atas mereka? Tidak ada yang menahannya (di udara) selain Yang Maha Pemurah. Sesungguhnya Dia Maha Melihat segala sesuatu.
(Surat al Mulk: 19)
(Surat al Mulk: 19)
Lebih dari itu, keberadaan sayap bukanlah satu-satunya prasyarat bagi makhluk darat untuk berubah menjadi burung. Hewan menyusui sama sekali tidak memiliki sejumlah hal yang digunakan burung untuk terbang. Sebagai contoh, tulang-tulang burung jauh lebih ringan daripada tulang hewan menyusui. Paru-paru mereka memiliki bentuk dan kegunaan yang berbeda, begitu pula bentuk rangka dan ototnya. Sistem peredaran mereka lebih khusus dibandingkan dengan yang dimiliki hewan menyusui. Seluruh hal ini tidak mungkin muncul sepanjang waktu melalui "proses sebab-akibat dari kejadian-kejadian sebelumnya." Pernyataan tentang peralihan hewan menyusui menjadi burung oleh karenanya hanyalah omong kosong.
Bentuk Bulu pada Burung
Teori evolusi, yang menyatakan bahwa burung adalah keturunan dari reptil, tidak mampu menjelaskan perbedaan yang begitu besar antara kedua kelas makhluk ini. Burung memperlihatkan ciri yang berbeda dengan reptil dalam hal memiliki bentuk kerangka yang berongga, tulang yang bobotnya sangat ringan, serta sistem pernapasan tersendiri dan sifatnya sebagai makhluk berdarah dingin. Struktur lain yang berbeda pada burung, yang menciptakan jurang pemisah tak teratasi antara burung dan reptil, adalah bulunya.
Bulu adalah yang terpenting dari segi keindahan yang menarik dari seekor burung. Ungkapan "ringan seperti bulu" menggambarkan kesempurnaan bentuk yang canggih dari sehelai bulu.
Bulu terbuat dari semacam zat protein yang disebut keratin. Keratin merupakan bahan yang keras dan berdaya tahan yang terbentuk dari sel-sel tua yang berpindah dari sumber-sumber zat gizi dan oksigen pada lapisan kulit yang lebih dalam dan mati untuk memberi jalan bagi sel-sel baru.
Rancangan pada bulu burung begitu rumit sehingga proses evolusi benar-benar tak mampu menerangkannya. Ilmuwan Alan Feduccia mengatakan bahwa bulu "memiliki kerumitan bentuk yang ajaib" yang "memungkinkan perbaikan aerodininamik secara mekanik" yang tak pernah dapat dicapai melalui cara lain manapun.14 Meskipun ia adalah seorang evolusionis, Feduccia juga mengakui bahwa "bulu merupakan penyesuaian yang hampir sempurna untuk terbang" karena bulu itu ringan, kuat, berbentuk pola yang memperlancar aliran udara, dan memiliki bentuk kawat berduri dan pengait yang sangat rumit.15
Rancangan bulu juga memaksa Charles Darwin untuk merenungkannya. Bahkan, keindahan sempurna bulu merak telah membuatnya "sakit" (menurut istilahnya sendiri). Dalam sebuah surat yang dia tulis untuk Asa Gray pada 3 April 1860, dia berkata, "Saya ingat benar ketika renungan tentang mata membuat saya jadi demam, tetapi saya telah pulih dari tahap yang menyusahkan ini…" Kemudian lanjutnya:
… dan sekarang bagian dari bentuk yang sepele sering membuatku sangat tidak nyaman. Pengamatan terhadap ekor merak, setiap kali memandanginya, membuatku sakit!16
Duri Kecil dan Pengait
Kita menemukan rancangan yang luar biasa jika bulu burung diamati di bawah mikroskop. Sebagaimana kita semua ketahui, terdapat ruas yang terbentang di bagian tengah bulu. Ratusan duri kecil tumbuh di tiap sisi ruas tersebut. Duri-duri dengan berbagai kelembutan dan ukuran memberikan bentuk aerodinamik pada burung. Terlebih lagi, setiap duri memiliki ribuan helaian yang lebih kecil yang menempel padanya dan disebut barbula (kawat-kawat halus), yang tidak dapat diamati dengan mata telanjang. Barbula ini terkunci bersama dengan alat seperti pengait (hamuli). Barbula tersebut terikat satu dengan lainnya seperti risleting dengan bantuan pengait-pengait ini. Sebagai contoh, satu helai bulu bangau memiliki sekitar 650 duri pada tiap sisi ruas bagian tengah. Sekitar 600 barbula bercabang di tiap duri. Setiap barbula terikat menjadi satu dengan 390 pengait. Pengait saling mengunci seperti gigi-gigi di kedua sisi risleting. Barbula-barbula ini saling mengunci begitu erat sehingga bahkan tiupan asap pada bulu tersebut tidak akan dapat menembusnya. Jika pengait-pengait tersebut terpisah karena suatu hal, burung dapat dengan mudah memperbaiki bulunya menjadi bentuk semula dengan mengocoknya sendiri atau dengan meluruskan bulu-bulunya dengan paruhnya.
Untuk bertahan hidup, burung harus menjaga bulunya tetap bersih, rapi, dan selalu siap untuk terbang. Mereka menggunakan kelenjar minyak yang berada di pangkal ekornya untuk perawatan bulu-bulu mereka. Mereka membersihkan dan menggosok bulunya dengan menggunakan minyak ini, yang juga memberikan kemampuan tahan air ketika mereka berenang, menyelam, atau berjalan dan terbang dalam hujan.
Di samping itu, pada cuaca dingin bulu-bulu tersebut mencegah suhu tubuh burung merosot. Bulu-bulu tersebut dirapatkan erat ke tubuh dalam cuaca panas agar tetap dingin.17
| Bulu-bulu muncul dari bentuk tabung berongga pada kulit. | Seekor anak burung berumur 2-3 jam pada umumnya sudah mempunyai bulu untuk menghangatkan diri |
Macam-macam Bulu
Bulu memiliki kegunaan berbeda tergantung pada tempatnya di tubuh. Bulu di badan seekor burung memiliki sifat-sifat yang berbeda dengan yang ada di sayap atau ekor. Bulu-bulu ekor yang penuh ditumbuhi bulu berguna untuk mengendalikan dan mengerem. Di lain pihak, bulu sayap memiliki bentuk berbeda yang memungkinkan daerah permukaannya mengembang ketika mengepak untuk memperbesar gaya angkat. Ketika sayap mengepak ke bawah, bulu-bulu makin merapat, yang mencegah aliran udara lewat. Ketika sayap berada dalam gerakan ke atas, bulu-bulunya terbuka, memberi jalan pada aliran udara.18 Burung menggugurkan bulunya selama waktu-waktu tertentu untuk menjaga kemampuan terbangnya. Bulu yang tua atau rusak akan langsung diperbarui.
Keindahan Sayap |
1. Gerakan bersambung ini menggambarkan berbagai tahapan dalam cara terbang burung gereja: lepas landas, penerbangan singkat dan mendarat
2. Pada dasarnya, ada tiga bentuk cara terbang (dari atas ke bawah): terbang berantai, terbang dalam baris berbentuk V dan terbang dalam kelompok
3. Kebanyakan burung dapat terbang, namun tidak semuanya bergerak dengan cara yang sama. Beberapa burung sedemikian terampil dalam terbang sehingga mereka dapat terbang amat dekat dengan tanah. Bentuk sayap tergantung pada jenis burung
4. Bulu burung nuri Amerika berbulu cerah dan panjang
5. Bulu burung elang
6. Bulu berguna untuk menjalankan berbagai macam tugas. Bentuk sayap dirancang secara khusus untuk terbang. Ekor, di pihak lain, dirancang untuk mengemudi dan mengerem ketika burung mendarat.
7. Sayap seekor Elang laut.
8. Elang laut, berkat sayapnya yang panjang dan sempit, dapat terbang melintas samudera. Seekor elang dapat dengan mudah memanfaatkan aliran udara panas. Burung yang sedang terbang dapat tetap terbang tinggi di udara karena bentuk bergelombang dari sayapnya.
9. Bulu tua dari burung diganti dengan yang baru, sering atau jarangnya penggantian berbeda-beda untuk tiap jenis. Pergantian bulu disebut "ganti kulit", yang terjadi sebelum berpindah tempat
10. Bulu-bulu pada kepala, tubuh dan sayap melindungi burung dari kelembaban dan dingin. Bulu-bulu juga membantu burung membubung di udara. Bulu-bulu pada bagian sisi menutup kulit yang lunak sekaligus membantu mengatur suhu tubuh.
11. Bulu sayap gagak biru (Garrulus glandarius
12. Bulu love bird/nuri hijau (marga Agapornis.)
13. Bulu burung camar.
14. Karena kelengkungan sayap, tekanan udara pada permukaan bagian atas lebih lemah daripada bagian bawah, yang berakibat mengangkat burung ke udara (kiri bawah). Jika sayap dilengkungkan, aliran udara berikutnya pada bagian atas meningkatkan tekanan yang menghasilkan gaya ke bawah. Dengan cara ini burung diam di udara (kanan bawah).
15. Sayap elang
16. Garis kuning menggambarkan lengkungan sayap
17. Sayap elang malam berkaki dan berparuh pendek (keluarga Caprimulgidae)
|
Sifat-Sifat Rancangan Sang Mesin Terbang
Penelitian lebih dekat terhadap burung mengungkapkan bahwa mereka dirancang khusus untuk terbang. Tubuhnya telah diciptakan dengan kantung udara dan tulang berongga untuk mengurangi massa tubuh dan berat keseluruhan. Sifat cairan kotoran mereka memastikan agar kelebihan air dalam tubuhnya dibuang. Bulu-bulu mereka berbobot sangat ringan bila dibandingkan dengan volumenya.
Mari kita telaah bentuk-bentuk khusus pada burung ini satu demi satu:
1- Kerangka
Kekuatan kerangka seekor burung lebih dari layak, meskipun tulangnya memiliki rongga. Sebagai contoh, seekor burung kutilang berparuh besar dan berleher pendek (Coccothraustes coccothraustes) sepanjang 7 inci (18 cm) melakukan tekanan sekitar 151 lbs (68,5 kg) untuk memecahkan suatu biji zaitun. Karena lebih "teratur" dibandingkan hewan menyusui, tulang bahu, panggul, dan dada pada burung bergabung bersama. Rancangan ini memperbaiki kekuatan bentuk burung. Sifat lain dari kerangka burung, sebagaimana telah disebutkan, adalah lebih ringan daripada rangka hewan menyusui. Sebagai contoh, kerangka seekor merpati beratnya hanya 4,4% dari keseluruhan berat tubuhnya. Tulang burung friget hanya seberat 118 gr, yang lebih ringan dibandingkan berat keseluruhan bulunya.
1. Balok penopang
2. Rongga 3. Tulang berongga 4. Penampang membujur dari tulang 5. Balok penopang 6. Sayap pesawat 7. Rongga 8. Bulu sayap 9. Pangkal dari bulu tertancap pada tulang sayap yang panjang
10. Bulu pada bagian ujung sayap terangkat ketika kecepatan berkurang. Udara melewati bagian atas bulu-bulu ini dan burung kembali memperoleh gaya angkat agar tidak terjatuh.
11. Tubuh seekor burung ditutupi oleh bulu. Bulu-bulu sayap membuka dan menutup saat burung mengepakkan sayapnya.
Tulang burung sangat ringan namun kuat, terutama karena berongga. Ada udara dalam rongga tempat balok-balok penopang memperkuat tulang tersebut. Tulang-tulang berongga ini menjadi ilham utama dalam rancangan sayap pesawat modern.
|
2- Sistem Pernapasan
Paru-Paru Khusus Pada Burung
Burung mempunyai bentuk tubuh yang jauh berbeda dengan binatang yang dianggap sebagai nenek moyangnya, reptil. Paru-paru burung bekerja dengan cara yang sama sekali berbeda dengan hewan menyusui. Hewan menyusui menghirup dan membuang udara melalui batang tenggorokan yang sama. Namun pada burung, udara masuk dan keluar melalui ujung yang berlawanan. “Rancangan” khusus semacam ini diciptakan untuk memberikan volume udara yang diperlukan saat terbang. Evolusi bentuk seperti ini dari reptil tidaklah mungkin.
Sistem pernapasan pada hewan menyusui dan burung bekerja dengan cara yang sepenuhnya berbeda, terutama karena burung membutuhkan oksigen dalam jumlah yang jauh lebih besar dibandingkan yang dibutuhkan hewan menyusui. Sebagai contoh, burung tertentu bisa memerlukan dua puluh kali jumlah oksigen yang dibutuhkan oleh manusia. Karenanya, paru-paru hewan menyusui tidak dapat menyediakan oksigen dalam jumlah yang dibutuhkan burung. Itulah mengapa paru-paru burung diciptakan dengan rancangan yang jauh berbeda.
Pada hewan menyusui, aliran udara adalah dua arah: udara melalui jaringan saluran-saluran, dan berhenti di kantung-kantung udara yang kecil. Pertukaran oksigen-karbon dioksida terjadi di sini. Udara yang sudah digunakan mengalir dalam arah berlawanan meninggalkan paru-paru dan dilepaskan melalui tenggorokan.
Sebaliknya, pada burung, aliran udara cuma satu arah. Udara baru datang pada ujung yang satu, dan udara yang telah digunakan keluar melalui lubang lainnya. Hal ini memberikan persediaan oksigen yang terus-menerus bagi burung, yang memenuhi kebutuhannya akan tingkat energi yang tinggi. Michael Denton, seorang ahli biokimia Australia serta kritikus Darwinisme yang terkenal menjelaskan paru-paru unggas sebagai berikut:
Dalam hal burung, bronkhus (cabang batang tenggorokan yang menuju paru-paru) utama terbelah menjadi tabung-tabung yang sangat kecil yang tersebar pada jaringan paru-paru. Bagian yang disebut parabronkhus ini akhirnya bergabung kembali, membentuk sebuah sistem peredaran sesungguhnya sehingga udara mengalir dalam satu arah melalui paru-paru…. Meskipun kantung-kantung udara juga terbentuk pada kelompok reptil tertentu, bentuk paru-paru burung dan keseluruhan fungsi sistem pernapasannya sangat berbeda. Tidak ada paru-paru pada jenis hewan bertulang belakang lain yang dikenal, yang mendekati sistem pada unggas dalam hal apa pun. Bahkan, sistem ini mirip hingga seluk-beluk khususnya pada semua burung…19
Dalam bukunya A Theory in Crisis, Michael Denton juga menunjukkan mustahilnya pembentukan sistem sempurna seperti itu melalui evolusi bertahap:
Aliran udara searah dalam paru-paru burung didukung oleh suatu sistem kantung udara. Kantung-kantung ini mengumpulkan udara dan memompanya secara teratur ke dalam paru-paru. Dengan cara ini, selalu ada udara segar dalam paru-paru. Sistem pernafasan yang rumit seperti ini telah diciptakan untuk memenuhi kebutuhan burung akan jumlah oksigen yang tinggi.
A. Lung
1. Trachea 2. Syrinx 3. Interclavicular sac 4. Anterior thoracic sac 5. Posterior thoracic sac 6. Abdominal sac |
Bagaimana mungkin sistem pernapasan yang sangat berbeda bisa berevolusi secara bertahap dari suatu rancangan baku hewan bertulang belakang, khususnya jika mengingat bahwa keberlangsungan fungsi pernapasan begitu menentukan bagi kehidupan suatu makhluk hidup, sedemikian sehingga kegagalan fungsi yang terkecil pun akan mengakibatkan kematian dalam sekejap. Seperti halnya ketika bulu tidak berfungsi sebagai alat terbang hingga pengait dan barbula dapat saling bersesuaian agar cocok sekaligus secara sempurna, demikian pula paru-paru unggas tidak akan berfungsi sebagai alat pernapasan hingga sistem parabronkhus yang tersebar di dalamnya serta sistem kantung udara yang menjamin pasokan udara untuk parabronkhus, keduanya telah berkembang dengan sempurna dan mampu bekerja bersama dengan cara yang menyatu sempurna pula.20
Pendeknya, peralihan dari paru-paru hewan menyusui ke paru-paru unggas adalah mustahil karena ternyata paru-paru yang akan menjalani tahap perkembangan peralihan tidak akan mempunyai manfaat apa pun. Tidak ada makhluk tanpa paru-paru dapat hidup meski hanya beberapa saat. Karena itulah, makhluk hidup tidak akan mampu menunggu jutaan tahun untuk mutasi acak demi menyelamatkan hidupnya.
Bentuk berbeda dari paru-paru unggas menunjukkan adanya rancangan yang sempurna yang memasok sejumlah besar oksigen yang dibutuhkan untuk terbang. Hanya perlu sedikit kesadaran untuk melihat bahwa susunan tubuh burung yang tak ada bandingannya ini bukanlah suatu hasil sekonyong-konyong dari mutasi tak sadar. Jelaslah bahwa paru-paru burung merupakan satu dari bukti-bukti yang tak terbatas bahwa semua makhluk telah diciptakan oleh Allah.
3-Sistem Keseimbangan
Allah telah menciptakan burung tanpa cela sebagaimana Dia lakukan pada ciptaan-Nya yang lain. Kenyataan ini terwujud dalam setiap perincian. Badan burung telah diciptakan dengan suatu rancangan khusus yang menghilangkan segala ketidakseimbangan yang mungkin terjadi selama penerbangan. Kepala seekor burung sengaja diciptakan ringan sehingga hewan tersebut tidak condong ke depan ketika terbang: rata-rata, bobot kepala seekor burung adalah sekitar 1% dari berat tubuhnya.
Bentuk bulu-bulunya yang aerodinamik merupakan sifat lain dari sistem keseimbangan pada burung. Bulu, terutama yang berada pada sayap dan ekor, memberi sistem keseimbangan yang sangat tepat guna bagi burung.
Sifat ini menjamin agar seekor elang mempertahankan keseimbangan mutlak ketika menukik menuju mangsanya dalam kecepatan 240 mil per jam (384 kilometer/jam).
4-Masalah Kekuatan dan Tenaga
Setiap proses dalam bentuk rangkaian kejadian, yakni dalam biologi, kimia, maupun fisika mematuhi "Prinsip Penghematan Energi." Singkatnya, kita bisa menyimpulkannya "diperlukan sejumlah energi tertentu untuk menyelesaikan suatu pekerjaan."
Contoh penting tentang pengehematan energi ini bisa diamati dalam terbangnya burung. Burung yang berpindah-pindah harus menyimpan energi yang cukup untuk membawanya melalui perjalanannya. Di sisi lain, kebutuhan lain selama penerbangan adalah berbobot seringan mungkin. Apa pun hasilnya, kelebihan beban harus dihindari. Sementara itu, bahan bakar juga harus sehemat mungkin. Dengan kata lain, jika berat bahan bakar harus sekecil mungkin, hasil tenaga darinya justru harus sebesar mungkin. Semua permasalahan ini telah teratasi pada burung.
Langkah pertama adalah menentukan kecepatan terbang yang optimal. Agar seekor burung ingin terbang sangat lambat, maka sejumlah besar energi harus dikeluarkan agar tetap berada di udara. Agar seekor burung bisa terbang sangat cepat, maka bahan bakar akan digunakan untuk mengatasi halangan udara. Oleh karena itu, jelaslah bahwa kecepatan terbaik harus dipertahankan untuk menggunakan jumlah bahan bakar sekecil mungkin. Tergantung pada bentuk rangka dan sayap yang polanya memperlancar aliran udara, kecepatan terbaik tersebut berbeda pada setiap jenis burung.
Mari kita telaah masalah ini pada burung plover emas Pasifik (sejenis belibis (Pluvialis dominica fulva): burung ini berpindah dari Alaska ke Hawaii untuk menghabiskan musim dinginnya di sana. Tidak ada pulau dalam perjalanannya. Oleh karena itu, mustahil beristirahat. Penerbangannya adalah sejauh 2500 mil (4000 km) dari awal hingga akhir dan ini secara kasarnya berarti 250.000 kepakan sayap tanpa henti. Perjalanan ini menghabiskan lebih dari 88 jam.
Berat burung adalah 7 ons (200g) di awal perjalanan, 2,5 ons (70 gr) dari berat tersebut merupakan lemak yang akan digunakan sebagai bahan bakar. Akan tetapi, setelah memperhitungkan jumlah energi yang dibutuhkan burung untuk terbang selama 1 jam, diketahui bahwa burung membutuhkan 3 ons (82 gr) bahan bakar untuk penerbangan ini. Berarti terdapat kekurangan 0,4 ons (12 gr) bahan bakar, dan burung akan kehabisan energi ratusan mil sebelum mencapai Hawaii.
Meskipun demikian, burung plover emas ini tidak gagal mencapai Hawaii setiap tahunnya. Ada rahasia apa pada makhluk ini?
Pencipta burung ini, Allah, mengilhami mereka dengan cara untuk dapat terbang secara mudah dan efisien. Burung ini tidak terbang secara sendiri-sendiri, melainkan dalam kelompok. Mereka mengikuti aturan tertentu dan membuat bentuk barisan "V" di udara. Bentuk barisan ini mengurangi hambatan udara yang mereka hadapi. Bentuk terbang ini begitu efisien sehingga mereka menghemat sekitar 23% dari energi mereka. Itulah mengapa mereka masih memiliki lemak seberat 0.2 ons (6-7 kg) ketika mendarat. Kelebihan lemak tersebut bukan karena adanya salah perhitungan, melainkan merupakan suatu bantalan yang akan digunakan jika menghadapi aliran udara yang berlawanan.21
Keadaan yang luar bisa ini menimbulkan pertanyaan berikut ini dalam pikiran kita:
- Keadaan yang luar bisa ini menimbulkan pertanyaan berikut ini dalam pikiran kita?
- Bagaimana sang burung mengetahui banyaknya lemak yang dibutuhkannya
- Bagaimana sang burung mengatur untuk mendapatkan jumlah lemak tersebut sebelum terbang?
- Bagaimana ia dapat menghitung jarak dan jumlah bahan bakar yang dibutuhkan?
Bagaimana caranya ia mengetahui bahwa suasana Hawaii lebih baik daripada Alaska?
Mustahil bagi burung untuk mencapai tingkat pengetahuan tersebut, untuk kemudian melakukan perhitungan-perhitungan ini, atau untuk membuat kelompok penerbangan berdasarkan perhitungan tersebut. Hal ini merupakan petunjuk bahwa burung tersebut "diilhami"dan diarahkan oleh suatu kekuasaan yang maha besar. Demikianlah Al Qur'an menarik perhatian kita pada "burung yang berbaris ketika terbang" dan memberi tahu kita tentang kesadaran yang diilhamkan dalam diri makhluk ini oleh Allah:
Tidakkah kamu tahu bahwasanya Allah: kepada-Nya bertasbih apa yang ada di langit dan di bumi dan (juga) burung dengan mengembangkan sayapnya. Masing-masing telah mengetahui (cara) sembahyang dan tasbihnya, dan Allah Maha Mengetahui apa yang mereka kerjakan. (Surat An-Nur: 41)
Dan apakah mereka tidak memperhatikan burung-burung yang mengembangkan dan mengatupkan sayapnya di atas mereka? Tidak ada yang menahannya (di udara) selain Yang Maha Pemurah. Sungguhnya Dia Maha Melihat segala sesuatu. (Surat Al-Mulk: 19)
5-Sistem Pencernaan
Burung lebih senang bepergian dalam kelompok untuk perjalanan jauh. Bentuk barisan "V" dari kelompok ini memungkinkan setiap burung menghemat tenaga sekitar 23%.
Terbang merupakan memerlukan sejumlah besar kekuatan. Karena itulah burung memiliki perbandingan jaringan otot terhadap massa tubuh yang terbesar daripada semua makhluk. Metabolisme tubuhnya juga sesuai dengan kekuatan otot yang tinggi. Rata-rata, metabolisme tubuh suatu makhluk berlipat dua kali sewaktu suhu tubuh meningkat sebesar 50°F (10°C). Suhu tubuh burung gereja yang sebesar 108°F (42°C) serta suhu tubuh burung murai (Turdus pilaris) setinggi 109,4°F (43,5°C) menunjukkan betapa cepat kerja metabolisme tubuh mereka. Suhu tubuh yang tinggi seperti itu, yang dapat membunuh makhluk darat, justru sangat penting bagi burung untuk bertahan hidup dengan meningkatkan penggunaan energi, dan, karena itu pula, kekuatannya.
Jantung burung gereja berdetak 460 kali dalam semenit. Suhu tubuhnya adalah 108°F (420C). Suhu tubuh setinggi ini, yang bisa berakibat kematian pada binatang darat, sangat penting bagi kelangsungan hidup sang burung. Tingkat energi yang tinggi yang diperlukan oleh burung untuk terbang dihasilkan oleh metabolisme tubuh yang cepat ini.
Karena kebutuhan mereka akan banyak energi, burung juga mempunyai tubuh yang mencerna makanan yang mereka makan dalam cara yang optimal. Sistem pencernaan burung memungkinkan mereka memanfaatkan dengan cara terbaik makanan yang mereka makan. Misalnya, seekor bayi bangau menggunakan 2,2 lbs (1 kg) dari massa tubuhnya untuk setiap 6,6 lbs (3 kg) makanan. Pada hewan menyusui dengan pilihan makanan yang serupa, perbandingan ini adalah sekitar 2,2 lbs (1 kg) hingga 22 lbs (10 kg). Sistem peredaran burung juga telah diciptakan selaras dengan kebutuhan energi tinggi mereka. Jika jantung manusia berdetak 78 kali per menit, jumlah detakan adalah 460 untuk burung gereja dan 615 untuk burung murai. Begitu pula, peredaran darah pada burung pun sangat cepat. Oksigen yang memasok seluruh sistem yang bekerja cepat ini disediakan oleh paru-paru unggas khusus.
Burung layang-layang
Burung juga menggunakan energinya dengan sangat efisien. Mereka memperlihatkan efisiensi yang tinggi secara meyakinkan dalam pemanfaatan energi dibandingkan hewan menyusui. Contohnya, burung layang-layang yang berpindah tempat membakar 4 kilokalori per mil (2,5 kilokalori per kilometer), sedangkan hewan menyusui kecil akan membakar 41 kilokalori.
Mutasi tidak dapat menjelaskan perbedaan antara burung dengan hewan menyusui. Meskipun kita menganggap salah satu sifat ini terjadi melalui mutasi acak, dan ini justru sudah mustahil, satu sifat tunggal berdiri sendiri tidak akan berarti apa-apa. Pembentukan metabolisme tubuh yang menghasilkan energi tinggi tidak punya makna tanpa paru-paru unggas yang khusus. Bahkan, hal ini akan menyebabkan hewan kesulitan bernafas karena oksigen yang masuk tidak mencukupi. Jika sistem pernapasan akan bermutasi sebelum sistem lain, maka makhluk ini akan menghirup lebih banyak oksigen daripada yang diperlukannya, dan akan dirugikan dengan cara yang sama. Kemustahilan lain terkait dengan bentuk rangka: meskipun seekor burung sudah mempunyai paru-paru unggas dan sudah ada penyesuaian mekanisme tubuh, ia masih belum akan mampu terbang. Tak peduli betapa kuatnya, tidak ada makhluk darat yang bisa lepas landas dari tanah karena bentuk rangka yang berat dan relatif terkotak-kotak. Pembentukan sayap juga memerlukan "rancangan" yang tersendiri dan sempurna.
Semua kenyataan ini membawa kita kepada satu kesimpulan: teramat mustahil untuk menjelaskan asal burung melalui perkembangan secara kebetulan atau teori evolusi. Ribuan jenis burung berbeda telah diciptakan dengan seluruh sifat jasmani mereka saat ini dalam "sekejap." Dengan kata lain, Allah-lah yang telah menciptakan mereka satu demi satu.
Cara Terbang Yang Sempurna
Dari burung elang laut hingga burung nazar, semua burung telah diciptakan dilengkapi dengan cara terbang yang memanfaatkan angin.
Karena terbang membutuhkan energi yang besar, burung telah diciptakan dengan otot dada yang kuat, jantung yang besar dan kerangka yang ringan. Bukti kehebatan penciptaan pada burung tidak berhenti pada tubuhnya saja. Banyak burung yang diilhami untuk menggunakan cara tertentu yang menurunkan energi yang diperlukan.
Burung alap-alap dalah burung liar yang terkenal di Eropa, Asia dan Afrika. Ia memiliki suatu kemampuan khusus: ia bisa menjaga posisi kepalanya dalam kedudukan diam sempurna di udara dengan menghadapi angin. Meskipun tubuhnya mungkin bergoyang dalam angin, kepalanya tetap saja tidak bergerak sedikit pun, yang meningkatkan keunggulan penglihatannya meskipun dipengaruhi semua gerakan. Giroskop, yang digunakan untuk menjaga kemantapan letak persenjataan pada kapal perang di lautan, bekerja dengan cara yang mirip. Itulah mengapa para ilmuwan biasanya menjuluki kepala burung tersebut "kepala yang distabilkan oleh giroskop."22
Teknik Pengaturan Waktu
Burung mengatur jadwal perburuannya untuk efisiensi optimal. Burung alap-alap suka memangsa tikus. Tikus biasanya berada di bawah dan permukaan tanah setiap 2 jam untuk makan. Waktu makan burung alap-alap bersamaan dengan tikus. Mereka berburu di siang hari namun baru memakan buruannya di malam hari. Oleh karena itu, di siang hari, burung alap-alap terbang dengan perut yang kosong dan berat tubuh yang ringan. Cara ini menghemat tenaga yang dibutuhkan. Setelah dihitung, burung ini menghemat 7% tenaga dengan cara ini.23
Membubung dalam Angin
Burung makin mengurangi energi yang digunakannya dengan memanfaatkan angin. Mereka membubung dengan meningkatkan aliran udara pada sayap-sayap mereka dan mereka bisa tetap "tertahan" dalam aliran udara yang cukup kuat. Udara yang berhembus ke atas merupakan nilai tambah bagi mereka.
Memanfaatkan aliran udara untuk menghemat energi terbang disebut "membubung." Burung alap-alap adalah salah satu burung dengan kemampuan ini. Kemampuan membubung merupakan suatu bukti kehebatan burung di udara.
Membubung memiliki dua keuntungan utama. Pertama, membubung menghemat energi yang dibutuhkan di udara ketika mencari makanan atau ketika mempertahankan tempat buruan. Kedua, membubung memungkinkan burung untuk secara meyakinkan meningkatkan jarak tempuh penerbangannya. Seekor burung camar dapat menghemat hingga 70% tenaganya ketika membubung.24
Tenaga dari Aliran Udara
Burung memanfaatkan aliran udara dengan cara-cara berbeda: Seekor alap-alap meluncur menuruni sisi bukit atau seekor camar laut menukik sepanjang karang di pesisir memanfaatkan arus udara, dan ini disebut "membubung di kecuraman."
Ketika angin yang kuat melewati puncak bukit, angin itu membentuk gelombang udara yang tak bergerak. Burung-burung pun bisa membubung di atas gelombang ini. Burung gannet (marga Morus) dan banyak burung laut lainnya menggunakan udara tak bergerak ini yang tercipta melalui pulau-pulau. Kadang-kadang mereka menggunakan aliran yang ditimbulkan oleh halangan yang lebih kecil seperti kapal-kapal, yang di atasnya burung-burung camar membubung tinggi.
Gelombang udara umumnya menghasilkan arus yang memiliki daya angkat untuk burung.
Gelombang udara merupakan pertemuan antara massa udara yang berbeda suhu atau kepadatan. Membubungnya burung di tempat pertemuan ini disebut "meluncur dalam hembusan." Gelombang udara ini, yang terbentuk khususnya di pesisir oleh arus udara yang datang dari laut, telah ditemukan dengan menggunakan radar, melalui pengamatan atas burung laut dalam kelompok yang meluncur di dalamnya. Dua jenis cara membubung lain yang diketahui adalah membubung dengan pengaruh panas (thermal soaring) dan membubung terus bergerak (dynamic soaring).
Thermal soaring merupakan suatu gejala yang diamati khususnya pada daerah pedalaman hangat di bumi. Begitu matahari menghangatkan daratan, daratan pun segera menghangatkan udara di atasnya. Begitu udara makin menghangat, udara pun makin ringan dan mulai naik. Kejadian ini dapat juga diamati pada badai debu atau jenis badai angin lainnya.
Cara Membubung Burung Nazar
Burung nazar menggunakan cara khusus untuk memindai bumi di bawahnya dari ketinggian yang tepat yang menyusuri gumpalan udara hangat yang meningkat, yang disebut arus panas (thermal). Mereka dapat terus-menerus memanfaatkan arus panas yang berbeda-beda untuk terus membubung di atas wilayah yang sangat luas dalam waktu yang sangat lama.
Di kala fajar, gelombang udara mulai naik. Pertama-tama, burung nazar yang lebih kecil lepas landas, menyusuri aliran udara yang lebih lemah. Ketika aliran udara menguat, burung yang lebih besar pun lepas landas. Burung hampir mengambang di atas aliran yang naik ini. Udara naik yang tercepat terletak di tengah-tengah arus tersebut. Mereka terbang dalam lingkaran rapat untuk menyeimbangkan gerak ke atas dengan gaya tarik bumi. Ketika mereka ingin naik, mereka merapat ke pusat aliran tersebut.
Burung pemburu lainnya juga memanfaatkan arus panas ini. Burung bangau memanfaatkan arus udara hangat, terutama ketika berpindah tempat. Bangau putih tinggal di Eropa tengah dan berpindah ke Afrika selama musim dingin dengan mengarungi perjalanan sekitar 4350 mil (7000 km). Jika mereka ingin terbang sendiri-sendiri dengan mengepakkan sayapnya, mereka akan butuh istirahat paling tidak empat kali. Namun, bangau putih mampu menuntaskan penerbangannya dalam tiga minggu dengan memanfaatkan arus udara hangat hingga 6-7 jam per hari, yang dialihkan menjadi penghematan energi yang besar.
A Predatory Vulture Reaches The Carcass Before The Hyena.
a. Nazar bermuka keriput
b. Nazar Griffon
c. Nazar pemangsa mencapai bangkai sebelum anjing liar
d. Bangkai binatang
b. Nazar Griffon
c. Nazar pemangsa mencapai bangkai sebelum anjing liar
d. Bangkai binatang
Nazar dapat mencapai makanannya lebih cepat daripada saingannya, anjing liar karena keterampilan terbangnya. Dalam gambar di atas, nazar griffin yang sedang memburu suatu bangkai menarik perhatian nazar bermuka keriput dan anjing liar. Namun, bahkan anjing liar yang kecepatan tertingginya sudah 25 mil perjam (40 kilometer per jam) tak cukup untuk mencapai bangkai pada waktunya. Anjing liar dapat mencapai bangkai sejauh 2,2 mil (3,5 kilometer) dalam 4,25 menit sedangkan nazar bermuka keriput mencapai bangkai dalam tiga menit pada kecepatan 44 mil per jam (70 kilometer per jam).
Karena perairan menghangat lebih lambat daripada daratan, arus udara hangat tidak terbentuk di atas lautan, itulah mengapa burung-burung yang berpindah dengan menempuh jarak yang jauh tidak memilih jalur di atas air. Bangau dan burung liar lainnya yang berpindah dari Eropa ke Afrika memilih melalui dataran Balkan dan Bosforus, atau melalui Semenanjung Iberia di atas Gibraltar.
1. Elang laut dengan bentangan sayap 10 kaki (3 meter) adalah salah satu burung terbesar di dunia. Tubuh sebesar itu memerlukan banyak energi untuk terbang. Namun, elang laut dapat terbang jarak jauh tanpa mengepakkan sayapnya dengan menggunakan cara membubung sambil terus bergerak. Cara ini menghemat begitu banyak energi dari makhluk ini
2. (kiri atas) Burung peluncur kekurangan minyak yang melindungi bulunya dari air. Oleh sebab itu, ia tidak menyelam untuk mendapatkan mangsanya. Paruh rendahnya lebih panjang dan peka untuk menyentuh. Sayapnya berbentuk sedemikian sehingga ia bisa terbang sangat dekat dengan permukaan air dalam waktu yang lama tanpa mengepakkan sayapnya. Ia memasukkan paruhnya yang rendah ke dalam air dan terbang sambil menggunakan cara ini. Ia menangkap mangsa apa pun yang dihantam paruh rendahnya.
3. (kiri bawah) Angsa liar terbang naik hingga 5 mil (8 kilometer). Namun, sekitar 3,1 mil (5 kilometer), tingkat kerapatan atmosfer 65% lebih rendah dibandingkan di atas permukaan laut. Seekor burung yang terbang pada ketinggian ini harus mengepakkan sayapnya lebih cepat lagi, yang akan memerlukan jauh lebih banyak oksigen. Sebaliknya bagi hewan menyusui, paru-paru makhluk ini telah diciptakan untuk digunakan paling baik pada pasokan oksigen yang tipis di ketinggian ini.
Elang laut, gannet, camar dan burung laut lainnya, di pihak lain, menggunakan arus udara yang dihasilkan oleh gelombang tinggi. Burung-burung tersebut mengambil keuntungan dari gerak naik udara yang diarahkan ke atas ujung-ujung gelombang. Ketika membubung di atas aliran udara ini, elang laut sering berputar dan mengarah menuju angin dan dengan cepat naik lebih tinggi. Setelah naik 30-45 kaki (10-15 meter) ke dalam udara, ia mengubah arah kembali dan melanjutkan membubung. Burung ini memperoleh energi dari perubahan arah angin. Aliran udara kehilangan kecepatan ketika menyentuh permukaan laut. Itulah mengapa elang laut menemukan arus yang lebih kuat di ketinggian yang lebih tinggi. Setelah mencapai kecepatan yang tepat, ia kembali meluncur mendekati permukaan laut. Banyak burung lainnya seperti burung penyisir laut (dari marga Puffinus) menggunakan teknik serupa ketika membubung di atas laut.
A. Terbang membubung miring tergantung pada gerakan udara yang naik ke puncak bukit
1. Beberapa burung terbang dalam gerak zig-zag
2. Angkatan ke atas dari gelombang 3. Angkatan ke atas dalam kedudukan miring < 4. : Udara naik sepanjang sisi bukit 5. Tebing curam pada bukit |
B. Terbang membubung dengan menggunakan panas udara, dalam gerak berbentuk cincin pusaran udara terjadi di bawah dasar gumpalan awan menggunung yang besar
6. Uara hangat yang naik
7. Suatu arus udara terbentuk antara bumi dan awan 8. Seekor burung terbang memutar pada arus udara |
C. Terbang membubung ke atas karena aliran udara panas hanya mungkin pada wilayah hangat.
9. Naik dengan melingkar
10. Melayang ke dalam arus berikutnya |
D. Terbang membubung dengan hembusan angin dimungkinkan ketika dua hembusan angin bertemu.
11. Seekor burung terbang dalam garis lurus
12. Arus udara naik lurus ke atas ditemui di sini 13. Arah gaya angkat ke atas |
Rancangan Pada Burung |
Indera yang paling canggih pada burung adalah penglihatan dan pendengaran. Burung yang biasanya berburu pada siang hari mempunyai kemampuan melihat yang lebih baik. Pendengaran burung yang mencari mangsa di malam hari lebih hebat dibandingkan kemampuannya yang lain.
Beberapa burung yang berburu dengan menyelam, seperti heron dan kormoran, dilengkapi dengan bentuk mata yang memungkinkan mereka melihat dengan tepat dan baik di dalam air. Kornea mata mereka lebih datar, yang memberi pembiasan dan penglihatan lebih baik.
Mata dari sebagian besar burung terletak di kedua sisi kepalanya. Oleh karena itu, mereka mempunyai sudut penglihatan yang luas.
Mata di bagian depan pada burung liar yang berburu di malam hari merupakan rancangan lain yang sempurna karena burung ini lebih membutuhkan penglihatan menyatu dibandingkan sudut penglihatan yang luas, dan penglihatan menyatu (daerah tempat kedua mata bisa melihat suatu benda) mempunyai sudut pandang yang sempit namun perincian dan fokus yang lebih baik dibandingkan pandangan manusia. Burung-burung mempunyai indera menarik lainnya pula, yang memungkinkan mereka tidak hanya mengindera getaran di udara namun juga menentukan arah perjalanan mereka dengan mengikuti medan magnet bumi.
|
1. Mata yang terletak di kedua sisi kepala memberi burung merpati daerah pandang yang sangat lebar (daerah jingga dan kuning)
A. Daerah tak terlihat, B. Pandangan menyatu
2. Burung hujan bergerak demikian cepat dengan manuver gesit di udara, yang memerlukan wilayah pandang yang lebih luas dibandingkan sebagian besar burung. Mata yang besar yang terletak di kedua sisi kepalanya memberikan wilayah pandang seperti ini.
3. Bagi beberapa burung, indera penciuman yang tajam sangat penting. Nazar hitam bisa menentukan bangkai dari jarak jauh karena indera penciumannya yang canggih.
|
Mata seekor burung hantu yang terletak di bagian depan kepalanya. Rancangan ini memberi burung pandangan “menyatu” yang hebat. Namun, ini juga menimbulkan wilayah tak terlihat yang luas. Akan tetapi, wilayah tak terlihat ini tidak merugikan bagi burung ini karena ia dapat memutar kepalanya 270 derajat dan melihat ke belakang dengan mudah.
A. Wilayah yang tak terlihat, B. Pandangan menyatu
|
1.Burung pelatuk dapat dengan mudah meraih ulat yang bersembunyi di dalam batang pohon dengan lidahnya. Burung kolibri dapat menghimpun nektar bunga dengan menggunakan lidahnya yang ramping dan bercabang.
2. Bentuk tengkorak burung adalah salah satu rancangan yang sempurna. Tengkorak tersebut ringan, sebagian besar tulangnya bergabung kecuali pada burung muda, garis putar mata lebar dan alat-alat penciuman terbatas untuk menghemat berat di kepala. Paruh adalah alat utama burung dan beberapa paruh tersebut dirancang untuk menggali, memilah, menusuk, memahat, melukai, memecah, mematuk, dll.
a. Lubang Hidung, b. Rongga Mata, c. Rongga Telinga
3. Kemampuan penglihatan burung dalam berburu pada siang hari jauh lebih unggul dibanding manusia. Kita bisa melihat seekor tikus di kejauhan dalam bentuk benda samar tak jelas, sedangkan seekor elang dapat melihat binatang yang sama pada jarak yang sama namun dengan perincian yang lebih tinggi.
|
Rancangan Sempurna Untuk Terbang, Berenang, Dan Berlari |
Rangka burung dirancang untuk memungkinkannya terbang, berjalan, bahkan berenang dengan efektif dalam cara yang paling cepat dan paling efisien.
Seluruh burung yang terbang dilengkapi dengan tulang dada yang sangat kuat (sternum) yang memiliki lempengan datar yang lebar, yang disebut lunas, sebagai sambungan otot-otot terbang. Otot-otot yang membungkus tulang ini mendukung penerbangan.
Bagian rangka yang yang disebut lempeng dada terdiri dari penyokong tulang sayap yang kokoh, dan meliputi tulang dada dan tulang garpu yang khas pada burung. Tulang yang menopang sayap ini sangat kuat dan bergabung bersama. Bulu ujung sayap menempel ke tulang-tulang “tangan” gabungan ini. Korset panggul menyambung bagian bawah maupun belakang untuk memungkinkan otot-otot kaki bekerja lebih tepat.
|
Tulang
A. Sayap tertarik ke bawah oleh otot yang mengerut. Ketika sayap diangkat dan otot dada kecil (supracoracoideus) mengerut, otot dada besar (pectoralis major) mengendur. Ketika otot dada besar dikerutkan dan otot dada kecil dikendurkan, sayap turun.
1. Otot-otot dada yang besar, 2. Otot-otot dada yang besar, 3. Otot-otot dada yang kecil
B. Karena burung dirancang untuk tujuan terbang, tulang-tulang mereka berongga dan terbungkus otot-otot, yang menghasilkan keringanan luar biasa tanpa mengorbankan kekuatan.
4. Paruh, 5. Tulang lengan (sayap) atas, 6. Tulang garpu , 7. Tulang panggul, 9. Tulang buku/tonjolan jari (pada sayap), 8. Tulang dada, 10. Jemari, 11.Tulang betis
C. Sayap bangau yang terbentang dalam gambar menunjukkan susunan aneka macam bulunya. Bulu-bulu yang lebih pendek yang berlapis satu atas lainnya memberi manfaat yang memperlancar aliran udara.
D. E. Burung gereja mempunyai tulang dada berlunas yang memungkinkannya terbang dalam jangka waktu lama. Tulang ini terbungkus oleh otot dada.
14. Paru-paru
15. Kantung udara 16. Empedal 17. Liver 18. Tembolok 19. Jantung 20. Lambung |
Ruang Rusuk
Tulang dada burung tidak lentur untuk melindungi tubuh ketika sayap dilipat, jika dibanding makhluk lain. Ini berarti, volume ruang rusuk tidak berubah selama terbang, menghirup, atau mengeluarkan nafas.
Burung pelari, semisal burung unta, mempunyai kaki panjang dan otot kuat yang berguna untuk lari, sedangkan burung pemangsa mempunyai tubuh lebih pendek dan tulang belakang yang lebih miring dibandingkan hewan lain, yang memungkinkannya bergerak lebih cekatan.
1. Bentuk bulu sayap yang lebih besar
2. Lapis sayap kedua 3. Lapis sayap utama 4. Bulu-bulu pundak Shoulder Feathers 5. Bulu-bulu sayap |
Segala puji bagi Allah yang memiliki apa yang ada di langit dan apa yang di bumi dan bagi-Nya (pula) segala puji di akhirat. Dan Dia-lah Yang Maha Bijaksana lagi Maha Mengetahui. Dia mengetahui apa yang masuk ke dalam bumi, apa yang ke luar darinya, apa yang turun dari langit dan apa yang naik kepadanya. Dan Dia-lah Yang Maha Penyayang lagi Maha Pengampun.
(Surat Saba': 1-2)
Terbangnya burung merupakan suatu gerakan yang mengagumkan. Kecepatan terbangnya jauh melebihi apa yang bisa kita capai dengan berenang atau berlari. Bahkan, tenaga yang dikeluarkan untuk tiap jarak juga jauh lebih kecil dibanding berlari atau berenang.
|
Manusia membuat lompatan mengagumkan dalam teknologi di abad ke-20. Salah satu bentuk kemajuan ini adalah penelitian ilmuwan tentang rancangan yang ditemukan dalam tubuh burung. Dalam rancangan pesawat, banyak prinsip gerak aliran udara yang ditemukan pada burung diterapkan, dan menghasilkan wujud yang amat memuaskan. Ini karena penciptaan burung adalah sempurna, sebagaimana kesempurnaan yang terlihat nyata dalam ciptaan lainnya.
|
Seekor burung hantu malam, dengan rentang sayap 21,7 inci (55 sentimeter), merupakan sosok pemburu malam yang sempurna. Mata besarnya terletak di depan kepalanya. Tempat ini sangat menguntungkan untuk menemukan mangsanya. Ciri lain matanya adalah kemampuan melihat di malam hari.
Di samping itu, burung hantu dapat memutar kepalanya tiga perempat putaran, di samping kelebihan wilayah pandangnya. Telinga burung ini juga sangat peka. Ia dapat mendengar dari tempat di cabang pohon suara ribut yang dibuat oleh seekor tikus dalam semak. Burung hantu mencengkeram pohon atau mangsanya dengan cakarnya yang besar dan kuat. Kita bisa dengan mudah melihat bahwa makhluk ini diciptakan sebagai pemburu malam yang sempurna.
|
Rancangan Pada Telur Burung
Penciptaan burung yang menakjubkan tidak berakhir pada sayap, bulu, atau keahlian menjelajahnya. Sifat rancangan yang luar biasa lainnya pada makhluk ini ada pada telurnya.
Meski biasa kelihatannya bagi kita, telur ayam memiliki sekitar lima belas ribu pori-pori yang menyerupai lubang-lubang kecil pada bola golf. Bentuk berpori-pori pada telur yang lebih kecil ini hanya bisa diamati di bawah mikroskop. Struktur berpori ini memberi telur kelenturan tambahan dan meningkatan ketahanannya terhadap benturan.
Telur merupakan pembungkus ajaib. Ia memasok semua zat gizi dan air yang dibutuhkan janin yang tumbuh di dalamnya. Kuning telur menyimpan protein, lemak, vitamin dan mineral, sedangkan putih telur berguna sebagai penyimpan cairan.
Anak ayam yang tengah tumbuh perlu menghirup oksigen dan melepaskan karbon dioksida. Ia juga membutuhkan sumber panas, kalsium untuk perkembangan tulangnya, perlindungan cairannya, perlindungan terhadap bakteri dan guncangan pada tubuhnya. Cangkang telur menyediakan semuanya untuk anak ayam, yang bernapas melalui kantung selaput yang tumbuh pada sang janin. Pembuluh darah dalam kantung ini membawa oksigen untuk janin ayam dan mengeluarkan karbon dioksida.
Cangkang telur itu ajaibnya, begitu tipis dan kuat, dan dapat menghantarkan panas induk yang mengeraminya.
Kehilangan yang Diperlukan
Section of Egg
1. Rongga udara
2. Lapisan luar dari putih telur tipis 3. Putih telur pekat 4. Kalaza 5. Lapisan dalam dari putih telur tipis 6. Latebra 7. Kuning telur 8. Cangkang 9. Cakram awal pertumbuhan |
Selama pengeraman, telur kehilangan 16% dari kandungan airnya dalam bentuk uap air. Para ilmuwan cukup lama meyakini bahwa hal ini merugikan dan disebabkan oleh bentuk berpori cangkang telur. Padahal, penelitian mutakhir memperlihatkan bahwa kehilangan ini diperlukan bagi anak ayam untuk dapat menetas dari telur. Anak ayam membutuhkan oksigen dan ruang untuk memungkinkannya menggerakkan kepalanya cukup untuk memecahkan cangkang ketika menetas. Penguapan cairan menghasilkan ruang dan oksigen yang dibutuhkannya.
Selanjutnya, perbandingan pengurangan cairan disesuaikan beragam antara 15 sampai 20% untuk keadaan terbaik yang tergantung pada jenis cangkang telur. Misalnya, kekurangan cairan pada telur sejenis burung camar dari marga Gavia beberapa kali lebih tinggi dibanding lainnya yang dierami pada keadaan yang lebih kering.
A. Anak ayam mempunyai 'gigi telur' khusus yang mereka gunakan hanya untuk memecah telur. Gigi ini terbentuk segera sebelum menetas dan, ajaibnya, menghilang setelah menetas.
B. Cangkang telur cukup kuat untuk melindungi janin selama 20 hari pengeraman. Namun cangkang ini juga dapat dengan mudah dipecahkan sehingga anak ayam dapat keluar.
C. Gambar ini menunjukkan tahapan perkembangan telur ayam di dalam rongga telur. Diperlukan sekitar 15 hingga 16 jam untuk terbentuknya telur ayam setelah pembuahan.
1. Folikel
2. Infundibulum (cerobong saluran) 3. Sel telur muda 4. Egg Yolk 5. Pintu saluran Protein putih telur dikeluarkan di sini 6. Ismus 7. Dua selaput cangkang dikeluarkan dengan mudah di sekeliling sel telur dan putih telur 8. Kelenjar cangkang 9. Saluran kelamin 10. Kelamin betina 11. Kloaka (saluran pembuangan sekaligus kelamin) |
Rancangan Telur untuk Daya Tahan
A. Cangkang telur diciptakan sedemikian rupa untuk memasok oksigen kepada anak ayam di dalamnya melalui lubang berpori. Bagan di atas menggambarkan alur karbondioksida, air, dan oksigen melalui pori-pori.
1. Tinggi
2. Rendah O2. Oksigen H2O. Water CO2. Karbondioksida 3. Tingkat Kepekatan Dan Arah 4. Darah tanpa oksigen 5. Cangkang 6. Saluran pori 7. Selaput cangkang 8. Selaput klorioalantois 9. Darah kaya oksigen
B. Gambar di atas menunjukkan cangkang telur sejenis burung camar dari marga Gavia yang ditempatkan pada tanah basah dan berlumpur. Cangkang ini tertutup suatu lapisan yagn disebut "lapisan pelindung inorganik," yang mencegah pori-pori menutup dan anak ayam mati lemas.
5. Cangkang
10. Lapisan pelindung inorganik 11. Selaput cangkang luar 12. Selapu cangkang dalam 13. Kerucut
C. Telur burung yang berada dalam berbagai keadaan juga beragam. Gambar di atas menunjukkan penampang sebuah telur burung hujan. Lapisan luar yang berbutiran khusus melindungi telur ini, tempat telur ini diletakkan di suatu tempat berkerikil, untuk mengatasi benturan dan goresan.
13. Kerucut
11. Selaput cangkang luar 12. Selaput cangkang dalam 14. Lapisan kristal rapat 15. Bagian tengah cangkang yang berlubang-lubang kecil |
Daya tahan cangkang telur sama pentingnya dengan pemanfaatan udara, air dan panas. Ia harus mampu menahan guncangan luar serta berat badan induk yang mengeraminya.
Telur berbagai burung diciptakan dengan warna penyamar. Telur burung loon menyerupai bentuk buah pir, yang merupakan bentuk yang sempurna menyerupai batu tajam. Ketika telur itu terbentur, telur tidak jatuh dengan mudah melainkan menggelinding dan berputar melingkar.
|
Penelitian lebih dekat mengungkap bahwa telur dirancang dengan daya tahan yang memadai. Allah menciptakan telur yang lebih kecil atau lebih besar berbeda-beda satu sama lain. Telur burung yang lebih besar biasanya lebih keras dan kurang lentur sedangkan telur burung yang lebih kecil lebih lunak namun lebih lentur.
Telur ayam kaku dan kokoh, namun tidak pecah ketika jatuh satu atas lainnya. Cangkang yang kokoh sekaligus melindunginya dari serangan. Jika telur yang lebih kecil sekokoh dan sekasar telur ayam, telur itu akan pecah lebih mudah. Penelitian menunjukkan bahwa telur yang lebih kecil tidak kaku, namun kuat dan lentur sehingga melindunginya dari pecah akibat benturan.
Kelenturan bentuk telur tidak hanya berperan melindungi anak ayam namun juga menentukan cara anak ayam menetas darinya. Seekor anak ayam yang akan keluar dari cangkang yang kaku dan kokoh hanya perlu membuka sepasang lubang di ujung telur yang tumpul sebelum mendorong kepala dan kakinya keluar. Anak ayam melihat dunia dengan mengangkat tutup ujung yang berbentuk topi yang terbentuk oleh pecahan yang menghubungkan lubang-lubang ini. 25
1. Saluran pori
2. Selaput cangkang luar 3. Selaput cangkang dalam 4. Lubang luar dari saluran pori 5. Balok kalsit (sejenis kalsium) dalam cangkang 6. Cangkang
Gambar penampang di samping menggambarkan bentuk cangkang telur.
|
Catatan Kaki
13. Engin Korur, "Gözlerin Ve Kanatlarin Sirri" (The Secret of The Eyes and Wings), Bilim Ve Teknik (Journal of Science and Technology), October 1984, Issue 203, P. 25.
14. Douglas Palmer, "Learning To Fly" (Review of "The Origin of and Evolution of Birds" By Alan Feduccia, Yale University Press, 1996), New Scientist, Vol. 153, March, 1 1997, P. 44
15. A. Feduccia, The Origin and Evolution of Birds, New Haven, Ct: Yale University Press, 1996, P. 130 Cited in Jonathan D. Sarfati, Refuting Evolution.
16. Francis Darwin, The Life and Letters of Charles Darwin, Volume Ii, From Charles Darwin To Asa Gray, April 3rd, 1860
17. Hakan Durmus, "Bir Tüyün Gelismesi" (The Development of a Feather), Bilim Ve Teknik (Journal of Science and Technology), November 1991, P. 34.
18. Hakan Durmus, "Bir Tüyün Gelismesi" (The Development of a Feather), Bilim Ve Teknik (Journal of Science and Technology), November 1991, Page 34-35.
19. Michael Denton, Evolution: a Theory in Crisis, London, Burnett Books Limited, 1985, P. 210-211.
20. Michael Denton, Evolution: a Theory in Crisis, London, Burnett Books Limited, 1985, P. 211-212.
21. Werner Gitt, "The Flight of Migratory Birds", Impact, No. 159
22. Bilim Ve Teknik Görsel Bilim Ve Teknik Ansiklopedisi (Encyclopedia of Science and Technology), Page 978.
23. Bilim Ve Teknik Görsel Bilim Ve Teknik Ansiklopedisi (Encyclopedia of Science and Technology), P. 978.
24. Bilim Ve Teknik Görsel Bilim Ve Teknik Ansiklopedisi (Encyclopedia of Science and Technology), P. 978.
25. Bilim Ve Teknik Görsel Bilim Ve Teknik Ansiklopedisi (Encyclopedia of Science and Technology), P. 564-567.
Kaydol:
Yorumlar (Atom)